Wednesday, December 23, 2015

Fwd: Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years



Sent from my iPad

Begin forwarded message:

From: "Gary Johnson" <gjohnson144@comcast.net>
Date: December 23, 2015 at 12:16:35 PM CST
To: "Gary Johnson" <gjohnson144@comcast.net>
Subject: FW: Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

 

22-Dec-2015

Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

Washington University in St. Louis

 

The moon was never a fully homogenized body like Earth, analysis of moon rocks made by the Chinese rover, Yutu, suggests. The basalts the rover examined are a new type, chemically different from those retrieved by the Apollo and Luna missions 40 years ago.

 

 

Inline image 1

Chinese rover analyzes Moon rocks: First new 'ground truth' in 40 years

Rover finds volcanic rocks unlike those returned by Apollo and Luna missions, tantalizing clues to the period of lunar volcanism

December 22, 2015

By Diana Lutz

 

 

CNAS/CLEP

The Chinese lunar rover, Yutu, photographed by its lander Chang'e-3, after the lander touched down in Mare Imbrium, a giant impact basin that had been filled by successive lava flows.

 

In 2013, Chang'e-3, an unmanned lunar mission, touched down on the northern part of the Imbrium basin, one of the most prominent of the lava-filled impact basins visible from Earth. 

It was a beautiful landing site, said Bradley L. Jolliff, PhD, the Scott Rudolph Professor of Earth and Planetary Sciences at Washington University in St. Louis, who is a participant in an educational collaboration that helped analyze Chang'e-3 mission data. The lander touched down on a smooth flood basalt plain next to a relatively fresh impact crater (now officially named the Zi Wei crater) that had conveniently excavated bedrock from below the regolith for the Yutu rover to study.

Since the Apollo program ended, American lunar exploration has been conducted mainly from orbit. But orbital sensors mostly detect the regolith (the ground-up surface layer of fragmented rock) that blankets the Moon, and the regolith is typically mixed and difficult to interpret.

Because Chang'e-3 landed on a comparatively young lava flow, the regolith layer was thin and not mixed with debris from elsewhere. Thus it closely resembled the composition of the underlying volcanic bedrock. This characteristic made the landing site an ideal location to compare in situ analysis with compositional information detected by orbiting satellites.

"We now have 'ground truth' for our remote sensing, a well-characterized sample in a key location," Jolliff said. "We see the same signal from orbit in other places, so we now know that those other places probably have similar basalts."

NASA/GSFC/ASU

Chang'e-3 landing site is indicated with a white square in this lunar map, a mosaic made with the Lunar Reconnaissance Orbiter's Wide Angle Camera. The landing sites of the Apollo missions are in red.

The basalts at the Chang'e-3 landing site also turned out to be unlike any returned by the Apollo and Luna sample return missions.

"The diversity tells us that the Moon's upper mantle is much less uniform in composition than Earth's," Jolliff said. "And correlating chemistry with age, we can see how the Moon's volcanism changed over time."

Two partnerships were involved in the collection and analysis of this data, published in the journal Nature Communications Dec. 22. Scientists from a number of Chinese institutions involved with the Chang'e-3 mission formed one partnership; the other was a long-standing educational partnership between Shandong University in Weihai, China, and Washington University in St. Louis.

A mineralogical mystery

The Moon, thought to have been created by the collision of a Mars-sized body with the Earth, began as a molten or partially molten body that separated as it cooled into a crust, mantle and core. But the buildup of heat from the decay of radioactive elements in the interior then remelted parts of the mantle, which began to erupt onto the surface some 500 million years after the Moon's formation, pooling in impact craters and basins to form the maria, most of which are on the side of the Moon facing the Earth.

The American Apollo (1969-1972) and Russian Luna (1970-1976) missions sampled basalts from the period of peak volcanism that occurred between 3 and 4 billion years ago. But the Imbrium basin, where Chang'e-3 landed, contains some of the younger flows — 3 billion years old or slightly less.

NASA/LPI

Four views of the Mare Imbrium basin and the Chang'e-3 landing site demonstrate how different the Moon looks to different types of remote sensing, underscoring the need for ground truth to calibrate the orbital observations. For a larger version of this image click here.

 

The basalts returned by the Apollo and Luna missions had either a high titanium content or low to very low titanium; intermediate values were missing. But measurements made by an alpha-particle X-ray spectrometer and a near-infrared hyperspectral imager aboard the Yutu rover indicated that the basalts at the Chang'e-3 landing site are intermediate in titanium, as well as rich in iron, said Zongcheng Ling, PhD, associate professor in the School of Space Science and Physics at Shandong University in Weihai, and first author of the paper.

Titanium is especially useful in mapping and understanding volcanism on the Moon because it varies so much in concentration, from less than 1 weight percent TiO2 to over 15 percent. This variation reflects significant differences in the mantle source regions that derive from the time when the early magma ocean first solidified.

Minerals crystallize from basaltic magma in a certain order, explained Alian Wang, PhD, research professor in earth and planetary sciences in Arts & Sciences at Washington University. Typically, the first to crystallize are two magnesium- and iron-rich minerals (olivine and pyroxene) that are both a little denser than the magma, and sink down through it, then a mineral (plagioclase feldspar), that is less dense and floats to the surface. This process of separation by crystallization led to the formation of the Moon's mantle and crust as the magma ocean cooled. 

The titanium ended up in a mineral called ilmenite (FeTiO3) that typically doesn't crystallize until a very late stage, when perhaps only 5 percent of the original melt remains. When it finally crystallized, the ilmenite-rich material, which is also dense, sank into the mantle, forming areas of Ti enrichment.

"The variable titanium distribution on the lunar surface suggests that the Moon's interior was not homogenized," Jolliff said. "We're still trying to figure out exactly how this happened. Possibly there were big impacts during the magma ocean stage that disrupted the mantle's formation."

Another clue to the Moon's past

The story has another twist that also underscores the importance of checking orbital data against ground truth. The remote sensing data for Chang'e-3's landing site showed that it was rich in olivine as well as titanium.

That doesn't make sense, Wang said, because olivine usually crystallizes early and the titanium-rich ilmenite crystallizes late. Finding a rock that is rich in both is a bit strange.

But Yutu solved this mystery as well. In olivine, silicon is paired with either magnesium or iron but the ratio of those two elements is quite variable in different forms of the mineral. The early-forming olivine would be magnesium rich, while the olivine detected by Yutu has a composition that ranges from intermediate in iron to iron-rich.

"That makes more sense," Jolliff said, "because iron-enriched olivine and ilmenite are more likely to occur together.

"You still have to explain how you get to an olivine-rich and ilmenite-rich rock. One way to do that would be to mix, or hybridize, two different sources," he said.

The scientists infer that late in the magma-ocean crystallization, iron-rich pyroxene and ilmenite, which formed late and at the  crust-mantle boundary, might have begun to sink, and early-formed magnesium-rich olivine might have begun to rise. As this occurred, the two minerals might have mixed and hybridized.

"Given these data, that is our interpretation," Jolliff said.

In any case, it is clear that these newly characterized basalts reveal a more diverse Moon than the one that emerged from studies following the Apollo and Luna missions. Remote sensing suggests that there are even younger and even more diverse basalts on the Moon, waiting for future robotic or human explorers to investigate, Jolliff said.

© 2015 Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130


 

 

 

China's Yutu moon rover finds new kind of moon rock

The discovery suggests the moon's ancient molten insides weren't homogenized.

ST. LOUIS, Dec. 22 (UPI) -- Chinese scientists say they've discovered a new kind of rock on the moon. The rock was discovered by China's Yutu rover, part of the country's Chang'e 3 unmanned lunar mission.

The small rover, deployed in 2013, discovered the never-before-seen mineral composition in an ancient lava flow in the Mare Imbrium. The Mare Imbrium is a formation created when lava filled an ancient lunar crater.

A more recent impact in the middle of the Mare Imbrium, known as Zi Wei crater, exposed the ancient basalt beneath the mare's surface. When the layers of the mare's lava cooled, they formed a type of rock unlike anything geologists have ever seen on the moon.

The rock's composition is detailed in a scientific paper published in the journal Nature.

Scientists believe the lava flow recently sampled and analyzed by Yutu is about about 3 billion years old -- relatively young compared to previously studied lunar rocks.

Because the lava flow is relatively young, its composition hasn't been compromised by errant debris from space. Its mineral composition is likely similar to the deeper basalt. Data from lunar orbiters suggest this type of basalt may also be present in other regions of the moon.

"The diversity tells us that the Moon's upper mantle is much less uniform in composition than Earth's," Bradley Jolliff, a professor of Earth and planetary sciences at Washington University in St. Louis and the only American on the Chinese research mission, said in a press release. "And correlating chemistry with age, we can see how the Moon's volcanism changed over time."

Mineral composition is affected by how fast and at what temperatures magma cools. The latest discovery may lend clues as to the behavior of the moon's molten center billions of years ago.

© 2015 United Press International, Inc. All Rights Reserved. 

 


 

 

Friday, December 18, 2015

Killing shuttle illogic !

Killing shuttle illogic--- Walter Cunningham

The self-inflicted hiatus is driven partially by fear of the space shuttle, but mostly by the unwillingness of Congress and the American public to adequately fund manned spaceflight. Timing for terminating the Shuttle and ramping up the Constellation program seems to be driven by the Office of Management and Budget, even though NASA's share of the Federal Budget is a miniscule one-seventh of its peak in the 60s.

The Orion spacecraft will eventually restore an American presence in space, but the heavy-lift and on-orbit servicing capability of the shuttle will be sorely missed, not to mention the Orbiter's dexterous manipulator, or the ability to return 25 tons from space.

This hiatus may be another of those two-steps-forward-one-step-back experiences that has marked NASA's first fifty years. Some consequences of the five-year intermission:

The space industry will lose thousands of experienced and talented workers, especially at the Kennedy Space Center;
Dependency on foreign sources, almost exclusively the Russians, to keep our manned space program going;
The fate of the International Space Station passes out of American hands;
The experienced astronaut corps will suffer attrition and deterioration;
Our position as the world's leading space faring nation will further erode.
NASA survived an earlier hiatus from 1974 to 1981, a period during which we flew one politically motivated, but otherwise meaningless docking mission with the Russians. During that period, the space industry lost tens of thousands of workers, our progress slowed, and our space program has not been the same since. The loss of experience during that period may have contributed to the slow withering of NASA's reputation and credibility. It was not a good thing then and is not a good thing now.

In the early 70s, it was assumed that the Apollo spacecraft had served its purpose and would be useless in accomplishing the next generation of objectives in space. NASA was excited about building a brand new spacecraft and flying brand new missions. They are now back tracking and developing Orion—"Apollo on steroids," as some call it. In retrospect, the Apollo command/service module was not the dead-end once thought. It could probably have evolved to service the ISS. After all, most of the trips to the ISS have been made by Russian space "capsules."

When the Apollo program was canceled in the early 70s, following six historic landings on the Moon, the spacecraft was cited as too risky and the cost of Apollo launches too high. The answer was to be the Space Transportation System—the Space Shuttle.

Now, as we rush to cancel the Shuttle program, all we hear is: that it is too risky and shuttle launches are too costly. I assure you, manned spaceflight will always be risky and the Constellation system will be quite expensive.

Since the Columbia tragedy in 2003, critics, both inside and outside of NASA, have been lobbying to send the space shuttle to the NASA junkyard. They have caught the "new car syndrome;" NASA wants a new spacecraft, so they are finding all manner of things wrong with their current model. That means the safest American spacecraft ever, with the most capability of any space vehicle, will be gone before 2011.



Sent from my iPad

Thursday, December 17, 2015

Expanding X37 B could get our orbital capabilities back! Critical need not understood by " Leadership" !!

Re Abbey article Lost in Space -- Washington 

The X-37B: Exploring expanded capabilities for ISS missions


However, our leaders don't appear to understand the critical need!

Saturday, December 12, 2015

I think not !

We cannot afford to lose our lead among space-faring nations. Narrowing the gap between the shuttle and Orion would reduce the problem of holding on to a skilled workforce and help the United States maintain its lead in space exploration, along with the related science and technology that drives economic growth. U.S. dominance in space hasn't been lost yet, but it is definitely eroding.

What we really need is a fix for the five-year hiatus, not a band-aid. That means both extending the life of the shuttle and moving the launch date for Orion forward. NASA needs a $2 billion appropriation to extend the life of the shuttle for 18 to 24 months, and an additional $2 billion to move the first flight of Orion closer by 18 to 24 months.

Four billion dollars is a drop in the bucket for a $3 trillion federal budget and a $13 trillion economy. The money would enable us to maintain world leadership in a range of technologies essential for our future well-being and allow us to continue to sit at the top of the technical pyramid. As the richest country on the face of the Earth do we really want to be dependent on Russia to launch our astronauts into space? I think not!


Walt Cunningham


Sunday, December 6, 2015

November 2015 Total -- Oakwood Lift Station Flow

page1image808Oklahoma Department of Environmental Quality

Environmental Complaints and Local Services
TOTAL RETENTION LAGOON Monthly operations report 


Facility name.     Total Retention Lagoon/Lift Station                                            Facility ID. S20605


Mailing Address.    PO box 56 , Oakwood, oklahoma 73658


Physical Address  one block east of Michigan & Walnut-- lift station

                               Lagoon is one mile south of lift station.

______________________________________________________________________________________

Month ____November___.       Year.  2015

Flow for month ( in gallons)

113902 gallons

Rainfall. 1.5 inches

Indicate date of each site visit


___________________________________________________________________________________________



       



Friday, December 4, 2015

Fwd: Nov. Fm data



Sent from my iPad

Begin forwarded message:

From: Bobby G Martin <bobbygmartin1938@gmail.com>
Date: December 4, 2015 at 6:46:24 PM CST
To: Bobby G Martin <bobbygmartin1938@gmail.com>
Subject: Nov. Fm data


Oklahoma Department of Environmental Quality

Environmental Complaints and Local Services

      TOTAL RETENTION LAGOON MONTHLY OPERATION REPORT

 

 

S20605 lift station 
Facility Name: Facility ID:     

 

 Oakwood lift station

Mailing Address:             

Mailing AddressCity​oakStateZip

 Box 56.              

Physical  Address:        

Physical AddressCityStateZip

Oakwood, ok 73658
 

 

Month:        Year:   

 

Flow for the month (in gallons):     November total

                     113,902 gallons
rainfall 1.5 inches

Sent from my iPad